14. x(1+y^2)^{\frac{1}{2}}dx=y(1+x^2)^{\frac{1}{2}}dy solve separable method

14. x(1+y^2)^{\frac{1}{2}}dx=y(1+x^2)^{\frac{1}{2}}dy solve separable method.

To solve this differential equation by separable method, we need to separate the variables x and y on opposite sides of the equation and integrate both sides.

Starting with the given differential equation:

(1)   \begin{equation*}x(1+y^2)^{\frac{1}{2}}dx=y(1+x^2)^{\frac{1}{2}}dy\end{equation*}

We can divide both sides by (1+y^2)^{\frac{1}{2}}(1+x^2)^{\frac{1}{2}} to obtain:

(2)   \begin{equation*}\frac{x}{(1+x^2)^{\frac{1}{2}}}dx=\frac{y}{(1+y^2)^{\frac{1}{2}}}dy\end{equation*}

Now we can integrate both sides with respect to their respective variables:

(3)   \begin{equation*}\int \frac{x}{(1+x^2)^{\frac{1}{2}}}dx=\int \frac{y}{(1+y^2)^{\frac{1}{2}}}dy\end{equation*}

For the left-hand side integral, we can use the substitution u = 1 + x^2, du = 2x dx to obtain:

(4)   \begin{equation*}\int \frac{x}{(1+x^2)^{\frac{1}{2}}}dx = \frac{1}{2} \int \frac{du}{\sqrt{u}} = \sqrt{u} + C_1 = \sqrt{1+x^2} + C_1\end{equation*}

where C_1 is the constant of integration.

For the right-hand side integral, we can use the substitution v = 1 + y^2, dv = 2y dy to obtain:

(5)   \begin{equation*}\int \frac{y}{(1+y^2)^{\frac{1}{2}}}dy = \frac{1}{2} \int \frac{dv}{\sqrt{v}} = \sqrt{v} + C_2 = \sqrt{1+y^2} + C_2\end{equation*}

where C_2 is the constant of integration.

Therefore, the general solution to the given differential equation is:

(6)   \begin{equation*}\sqrt{1+x^2} + C_1 = \sqrt{1+y^2} + C_2\end{equation*}

where C_1 and C_2 are constants of integration.

(7)   \begin{equation*}\sqrt{1+x^2} + C = \sqrt{1+y^2} \end{equation*}

where C are constants of integration.

Leave a Comment