Solution by separation of variables dx+e^{3x}dy= 0.

Solution by separation of variables dx+e^{3x}dy= 0.

Given differential equation is:

(1)   \begin{equation*} dx + e^{3x}dy = 0 \end{equation*}

We can separate the variables as follows:

(2)   \begin{equation*} dy = -\frac{dx}{e^{3x}} \end{equation*}

Now, we can integrate both sides of the equation:

(3)   \begin{equation*} \int dy = -\int \frac{dx}{e^{3x}} \end{equation*}

Integrating the left-hand side, we get:

(4)   \begin{equation*} y = C_1 -\int \frac{dx}{e^{3x}} \end{equation*}

where C_1 is the constant of integration.

For the right-hand side, we can use the substitution u = 3x and du/dx = 3 to obtain:

(5)   \begin{equation*} \int \frac{dx}{e^{3x}} = \frac{1}{3}\int e^{-u}du = -\frac{1}{3}e^{-u} + C_2 \end{equation*}

where C_2 is another constant of integration. Substituting back u=3x, we have:

(6)   \begin{equation*} \int \frac{dx}{e^{3x}} = -\frac{1}{3}e^{-3x} + C_2 \end{equation*}

Substituting this back into our original equation, we have:

(7)   \begin{equation*} y = C_1 +\frac{1}{3}e^{-3x} + C_2 \end{equation*}

where C_1 and C_2 are constants of integration.

Therefore, the solution to the differential equation dx + e^{3x}dy = 0 is:

(8)   \begin{equation*} y = -\frac{1}{3}e^{-3x} + C \end{equation*}

where C = C_1 + C_2 is the constant of integration.

Leave a Comment